

AQA Chemistry A-level Topic 2.6 - Reactions of Ions in Aqueous Solution

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

DOG PMTEducation

R www.pmt.education

Are 2+ ions or 3+ ions more acidic in solution? why?

Are 2+ ions or 3+ ions more acidic in solution? why?

3+ ions are much more acidic

3+ ions are smaller and more highly charged, so have a higher charge density. They attract the electrons from the oxygen of the ligands much more strongly. This weakens the O-H bonds, so the complex readily releases a H⁺ ion into the solution, making it acidic.

Write an equation for the hydrolysis of a 3+ ion to release a proton

Write an equation for the hydrolysis of a 3+ ion to release a proton

 $[Fe(H_2O)_6]^{3+}(aq) \rightleftharpoons [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq)$

What kind of acid is the complex ion acting as? Why?

$[Fe(H_2O)_6]^{3+}(aq) \rightleftharpoons [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq)$

What kind of acid is the complex ion acting as? Why? $[Fe(H_2O)_6]^{3+}(aq) \Rightarrow [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq)$

Bronsted-Lowry - donates a proton

Define a Lewis acid

Define a Lewis acid

Electron pair acceptor

Define a Lewis base

Define a Lewis base

Electron pair donor

What is acting as the Lewis

acid and what is acting as

the Lewis base during the

formation of complex ions?

What is acting as the Lewis acid and what is acting

as the Lewis base during the formation of complex

ions?

The metal ion is acting at the Lewis acid and the ligands as Lewis bases

Fill in the table for Fe²⁺ reactions

Test	Complex ion	Colour
In aqueous solution		
Add NaOH (dropwise and excess)		
Add NH ₃ (dropwise and excess)		
Add Na ₂ CO ₃		

In aqueous solution $[Fe(H_2O)]$ Add NaOH (dropwise $[Fe(H_2O)]$ and excess)	$G_{6}^{3}]^{2+}$ (aq) $G_{4}^{3}(OH)_{2}^{3}$ (s) Green ppt, goes brown on
Add NaOH (dropwise $[Fe(H_2O)]$ and excess)	$_{4}(OH)_{2}]$ (s) Green ppt, goes brown on
	standing in air
Add NH_3 (dropwise and [Fe(H ₂ O) excess)) ₄ (OH) ₂] (s) Green ppt, goes brown on standing in air
Add Na ₂ CO ₃ FeCO ₃	Green ppt

www.pmt.education D@f DPMTEducation

Why does the green ppt go brown on standing in air in the reaction of Fe²⁺ with $NH_{3}?$

Why does the green ppt go brown on standing in air in the reaction of Fe^{2+} with NH_3 ?

Oxygen in the air oxidises Fe^{2+} to Fe^{3+} , and $[Fe(OH)_3(H_2O)_3]$ is brown, so colour changes

Fill in the table for the reactions of

Test	Complex ion	Colour
In aqueous solution		
Add NaOH (dropwise and excess)		
Add NH ₃ (dropwise)		
Add NH ₃ (excess)		
Add Na ₂ CO ₃		
Add concentrated HCI		

Fill in the table for the reactions of Cu²⁺

Test	Complex ion	Colour
In aqueous solution	[Cu(H ₂ O) ₆] ²⁺	Blue
Add NaOH (dropwise and excess)	[Cu(H ₂ O)₄(OH) ₂] (s)	Blue ppt
Add NH ₃ (dropwise)	[Cu(H ₂ O) ₄ (OH) ₂] (s)	Blue ppt
Add NH ₃ (excess)	[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺ (aq)	Deep blue solution
Add Na ₂ CO ₃	CuCO ₃	Blue-green ppt
Add concentrated HCI	[CuCl ₄] ²⁻ (aq)	Pale Green/yellow solution

Fill in the table for the reactions of Fe³⁺

Test	Complex ion	Colour
In aqueous solution		
Add NaOH (dropwise and excess)		
Add NH ₃ (dropwise and excess)		
Add Na ₂ CO ₃		

Test	Complex ion	Colour
In aqueous solution	[Fe(H ₂ O) ₆] ³⁺	Purple solution, may look yellow-brown due to [Fe(H ₂ O) ₅ (OH)] ²⁺ (aq)
Add NaOH (dropwise and excess)	[Fe(H ₂ O) ₃ (OH) ₃] (s)	Brown ppt, may look orange-brown
Add NH ₃ (dropwise and excess)	[Fe(H ₂ O) ₃ (OH) ₃] (s)	Brown ppt, may look orange-brown
Add Na ₂ CO ₃	[Fe(H ₂ O) ₃ (OH) ₃] (s)	Brown ppt, may look orange-brown, effervesence

Fill in the table with the reactions of Al³⁺

Test	Complex ion	Colour
In aqueous solution		
Add NaOH (dropwise)		
Add NaOH (excess)		
Add NH ₃ (dropwise and excess)		
Add Na ₂ CO ₃		

Fill in the table with the reactions of Al³⁺

Test	Complex ion	Colour
In aqueous solution	[AI(H ₂ O) ₆] ³⁺	Colourless solution
Add NaOH (dropwise)	[AI(H ₂ O) ₃ (OH) ₃] (s)	White ppt
Add NaOH (excess)	[AI(OH) ₄]⁻ (aq)	Colourless solution
Add NH ₃ (dropwise and excess)	[AI(H ₂ O) ₃ (OH) ₃] (s)	White ppt
Add Na ₂ CO ₃	[AI(H ₂ O) ₃ (OH) ₃] (s)	White ppt, effervescence

Fill in the table for the reactions of Co²⁺

Test	Complex ion	Colour
In aqueous solution		
Add NaOH (dropwise and excess)		
Add NH ₃ (dropwise and excess)		
Add Na ₂ CO ₃		
Add HCI		

Fill in the table for the reactions of Co²⁺

Test	Complex ion	Colour
In aqueous solution	[Co(H ₂ O) ₆] ²⁺	Pink
Add NaOH (dropwise and excess)	[Co(H ₂ O) ₄ (OH) ₂] (s)	Blue ppt
Add NH_3 (dropwise and excess)	[Co(NH ₃) ₆] ²⁺ (aq)	Pale brown solution
Add Na ₂ CO ₃	CoCO ₃ (s)	Purple ppt
Add HCI	[CoCl₄]²- (aq)	Blue solution

